实训二 数控车床的基本功能与操作

2.1 实训目的与要求

1. 理解机床坐标和工件坐标系的关系。

2. 掌握对刀的方法。

3. 掌握工件坐标。系的设置方法

2.2 实训设备

1. 微型计算机每人一台,FANUCOiMate 数控系统数控车床模拟软件。

2. FANUCOi Mate 数控系统数控车床、外圆车刀、切断刀。

3. φ25 的塑料棒。

2.3 相关知识

2.3.1 基本坐标关系

数控车床的操作与编程过程中,通常使用的有三个坐标系。

机床坐标系又称机械坐标系,是机床运动部件的进给运动坐标系,其坐标轴和方向 由标准规定,其坐标原点(机床原点)的位置由各机床生产厂设定。在机床坐标系中设有 一个固定的参考点,这个参考点主要是用于给机床本身定位。每次开机后由于系统所处的 坐标系未知,刀架停留在哪个位置也就未知,这样势必造成基准的不统一,所以数控机 床开机时第一步操作就是刀架返回参考点(回零点)。通过确认参考点,就确定了机床原 点。只有机床参考点被确认后,刀具移动才有基准。

编程坐标系是编程人员根据零件图样及加工工艺等建立的坐标系。为了计算和编程的 方便,通常将编程原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基 准重合。

加工坐标系是以确定的加工原点为基准所建立的坐标系。在加工时,工件各尺寸的坐标值都是相对于加工原点而言的,这样数控机床才能按照准确的加工坐标系位置开始加工。机床坐标系是机床唯一的基准,所以确定加工原点在机床坐标系中的位置是一个非常重要的环节。通常这个环节通过对刀来完成。

2.3.2 手动对刀方法

工件和刀具装夹完毕,驱动主轴旋转,移动刀架至工件,试切一段外圆。然后保持 X 坐标不变移动 Z 轴,刀具离开工件,测量出切削后外圆的直径,将该直径值输入到相应刀 具的形状刀补 X 坐标中,即得到刀尖在 X 轴上的位置;移动刀具试切工件右端面,然后保 持 Z 坐标不变移动 X 轴,刀具离开工件,刀尖点所处 Z 轴的位置根据编程的需要进行设置, 通常 Z 坐标可以设置为 0, 将 Z 坐标的值输入相应刀具的形状刀补 Z 坐标中, 即得到刀尖 在 Z 轴上的位置。

2.3.2 工作坐标系的设定

1. 用 G50 设定

数控系统中工件坐标系的建立可以通过 G50 X- Z- 语句设定刀具当前所在位置的坐标值来确定。用 G50 设定坐标系时,对刀后将刀具移动到 G50 设定的位置才能加工。 2. 用工件偏移设置工件零点

工件偏移设置工件零点是设置 MDI 参数,运用 G54[~]G59 可以设定六个坐标系,这种坐标系相对于参考点不变,与刀具位置无关。

2.4 实训指南

2.4.1 直接用刀具试切对刀

2. 装刀

①在加工显示窗口点击鼠标右键,出现图2.1对话框,选择手动装刀。

②选择刀具,将鼠标移至被选刀具上,按住鼠标左键将刀具拖至刀架处安装(图2.2)③松螺钉,调整刀具;紧螺钉,关闭调整刀具位置窗口(图2.3)。

(3) 直接用刀具试切对刀

③通过手轮将刀具进行微调,在工件上试切工件的右端面,然后按 调到工具补正/ 形状页面(图 2.6),输入"Z0",按工具补正/形状页面下方软键【测量】,刀具 "Z"补偿值自动输入到几何形状里。

(4) 用 G50 设置工件零点

①将模式置于 为方式,按 按按按按钮,用外圆车刀试切一段外圆,后刀具推到靠近端面处,按 键进入坐标显示窗口(图 2.8),按软键【相对】,再选择字母键U,这时U坐标出现在输入栏(图 2.9)。按软键【起源】置 Z 轴 "零",测量工件外圆后,按

■ 选择 MDI 方式, 输	入 "MO3 S500; GO1 U-X FO.	5;"(X 为测量的直径), 按
键复位后按斷明調,刀具切]削到工件端面中点,坐标显:	示如图 2. 10;
ACTUAL POSITION 09999 N00000 (RELATIVE) (ABSOLUTE) U -44.880 X -185.560 V 0.000 Z -75.880 (MACHINE) X -305.800 Z -431.300 IDI +++ +++ 下午 09:49:10 (発対)(相対)(姿容)(ENDL)((操作))	ACTUAL POSITION 09999 N00000 (RELATIVE) (ABSOLUTE) U -44.880 X -185.560 W 0.000 Z -75.880 (MACHINE) X -305.800 Z -431.300 >U 5500 T0100 DDI +++ +++ +++ 下午 09:51:00 (預定)(起源)())	ACTUAL POSITION (RELATIVE) 09999 NO0000 U -34.960 W 0.000 (MACHINE) X -360.000 Z -428.860 ACT.F 0 MM/M S500 T0100 MDI +++ +++ +++ 下午 10:08:00 (绝对)(招因)(综合)(HNDL)((操作))
图 2. 8	图 2. 9	图 2. 10
②按选择 MDI 方式, 车	俞入"G50 X0 Z0",按	键复位后按题,把当前点设为

零点。 ③按 型 选择 MDI 方式, 输入"GOO X100 Z100", 按 塑 键复位后按 题, 刀具由零

点移动到坐标点为 X100, Z100 的位置。

注意:编程时用 G50 X100 Z100,起点和终点必须一致,这样才能保证重复加工不乱刀。

2.5 实训内容

1. 在超软模拟软键中完成用 G50 设置工件零点。

2. 在超软模拟软键中完成直接用刀具试切对刀,然后输入参考程序并运行程序。

3. 在数控车床上完成工件的装夹、刀具的安装和刀具试切对刀训练。

4. 运行程序。输入参考程序,进行校验后,完成工件加工。

参考程序:

01111; N10 M03 S500; N20 T0101; N30 G00 X51 Z1 ; N40 G01 X20 F10 ; N50 Z-10; N60 X30 Z-15; N70 Z-25; N80 G00 X100 ; N90 Z100 M05; N100 M30;

实验三 机床的基本功能与操作

1、 实验目的

- 1、了解该机床的坐标系统;
- 2、了解该机床的功能及结构;
- 3、了解机床控制面板各键和按纽的功能及用途;
- 4、掌握主轴手动换档的操作步骤;
- 5、 熟练掌握开机、关机的操作步骤;
- 6、熟练掌握回零、手动、手轮方式的操作;
- 7、熟练掌握主轴启动、停止、正转、反转及换档的操作。

2、 实验要求

- 1、本实验先由指导教师讲解机床的结构功能及坐标系统;
- 2、由指导教师演示开机、关机及控制面板上的各键功能和作用;
- 3、由指导教师演示运动方式中的所有功能项目;
- 4、在机床运动过程中,不要随意触摸机床上的各个限位开关;
- 5、未经指导教师允许,不要随意按动任何按钮和开关。

3、 实验内容

- 1、机床开机步骤
 - 1) 把机床钥匙插入电箱门锁内,打开门锁,将门锁的把柄顺时针向上转动到"ON"处,此 时机床电源启动;
 - 2) 打开急停开关;
 - 3) 按控制板上绿色的"NC"启动按钮,系统NC部分启动,屏幕将显示"工作方式选择" 的初始画面,如图所示。

初始画面示意图

2、手动方式操作

1) 在 NC 初始画面中,选择数字键"2", NC 进入"手动方式",如图所示;

手动方	式
X 轴	0.00
Z轴	0.00

手动方式示意图

- 2) 选择29号轴向选择开关,X轴或Z轴;
- 3) 按下14号按钮机床的溜板就可向X轴或Z轴的正向移动,屏幕的坐标也随着变化;
- 4)释放按钮后,机床的溜板停止移动;
- 5) 按下15号按钮机床的溜板就可向X轴或Z轴的负向移动,屏幕的坐标也随着变化;
- 6)释放按钮后,机床的溜板停止移动;
- 7) 在手动方式进给中,进给的速度可由8号倍率衰减开关进行修调;
- 8) 按"方式"键,退出该方式,回到NC初始画面。
- 3、手轮方式操作
 - 1) 在 NC 初始画面中,选择数字键"3", NC 进入"手轮方式",如图所示;

手轮方式示意图

- 2) 选择29号轴向选择开关,X轴或Z轴;
- 3) 摇动手轮脉冲发生器,相应的坐标轴就会移动,顺时针为正向,逆时针为负向;
- 4) 手轮每格的当量有两档 0.10mm 和 0.01mm,可按"转换"键进行选择,所选择的当量被显示在屏幕的右上角;
- 5) 按"方式"键,退出该方式,回到NC初始画面。
- 4、回零方式操作
 - 1) 在返回零点之前,刀架A的位置是否处在机床原点和参考点之间的区域内,若不在,应 使用手动方式或手轮方式将刀架移动到该区域内;
 - 2) 在 NC 初始画面中,选择数字键"4", NC 进入"回零方式",如图所示;
 - 3) 选择29号轴向选择开关X轴;
 - 4) 按下14号按钮机床的溜板就可向X轴正向移动,当机床返回参考点后机床停止移动,屏 幕上X轴的坐标值被置零,并且在坐标值的后面显示"回零"的字样,如图所示;

- 5) 选择29号轴向选择开关Y轴;
- 6) 按下14号按钮机床的溜板就可向Z轴正向移动,当机床返回参考点后机床停止移动,屏 幕上Z轴的坐标值被置零,并且在坐标值的后面显示"回零"的字样;
- 7) 按"方式"键,退出该方式,回到NC初始画面。
- 5、程序显示操作
 - 1) 在 NC 初始画面中,选择数字键 "6", NC 进入"程序显示",如所示;
 - 2) 按下"分页"键, 屏幕将显示下一页的程序内容;
 - 3) 按"方式"键,退出该方式,回到NC初始画面。

N10 G92 X265.00 Z100.00 * N12 G00 M06 T11 * N14 G00 X94.00 Z5.00 M03 * N16 G01 X80.00 Z-2.00 F80 * N18 G01 X80.00 Z-10.00 * N20 G01 X70.00 W-12.00 * N22 G01 U0.00 W-5.00 F60 *

程序显示示意图

- 6、自动方式操作
 - 1) 在 NC 初始画面中,选择数字键 "0", NC 进入"自动方式",如图所示;

自动方式示意图

- 2) 按"检索"键,在屏幕低部显示"检索N"的字样;
- 3) 输入要检索的程序号,如:N14;
- 4) 如果输入的有错误,可按下"清除"键,在执行第二步;
- 5) 当输入了正确的程序号后,按"输入"键,就从程序号 N14 开始显示程序,如图所示;

自动方式示意图

6) 将"方式选择开关"14号开关旋转到自动方式处;

7) 按"启动"键,则程序从N14开始自动执行。

以上自动方式操作执行的程序,由实验指导教师事先输入到机床内,只是做演示使用,关于 程序的输入与编辑将在下一个实验做详细说明。

- 7、主轴启动(正转/反转)、停止及换档的操作
 - 在以下某一种方式中:
 手动方式、手轮方式、单段方式及自动方式;
 - 2) 按11号主轴手动连续正转启动按钮,主轴正向连续运转;
 - 3) 按12号主轴停止开关,正在运转的主轴将立即停止;
 - 4) 按13号主轴手动连续反转启动按钮, 主轴反向连续运转;
 - 5) 主轴换档的操作,只有在主轴停止后,才能换档。

注意: 主轴正转切换到主轴反转或主轴反转切换到主轴正转,必须要使用主轴停止,在转换, 不能直接转换。

4、 实验记录

1、记录该机床回零后,分别到X轴、Z轴的正负极限距离:

	回零的坐标	到正极限的坐标	到负极限的坐标	行 程
X 轴				
Z 轴				

2、记录本实验自动方式执行的程序,并画出刀尖的运动轨迹。

5、 课后练习

- 1、该机床有那些功能?
- 2、说出该机床的系统是闭环还是半闭环?
- 3、在手动方式或手轮方式中,如果移动溜板超出极限,将如何处理?