编程流程

1、文件导入

启动 JDSoft SurfMill V9.5 软件,新建加工文件,在 3D 造型环境下,点击(文 件一输入一三维曲线曲面一"起落架支架. IGS"和"案例夹具. IGS"),如图1中所 示,导入成功后将其保存、命名为:"起落架支架编程文件"。

夹具-起落架支架

图1 文件导入流程

在 3D 造型环境下,点击变换一图形聚中命令,使起落架支架在 X 轴/Y 轴方向上中 心聚中,在 Z 轴方向上顶部聚中,并根据毛坯和夹具实际位置进行夹具模型的位置变 换。

2、配置编程环境

1、机床设置

切换至加工环境,双击"机床设置",在机床类型选项卡中,选择机床类型为"5 轴",机床型号为"JDGR400T_A15SH"(根据实际情况进行机床设置);在 ENG 设置 扩展选项卡中,勾选"子程序模式-子程序支持T"。

2、刀具表设置

双击刀具表,依次添加表1中刀具(根据实际加工工艺创建),并配置相关参数: 表1 加工刀具表

刀具号	1	2	3	4	5	6	7
刀具名称	ф 6mm	φ4mm	Φ4mm	Φ2mm	φ5.5mm	$\Phi4\text{mm}$	φ4mm
	平底刀	平底刀	锥度平底	平底刀	钻头	直径测针	定心钻
			刀				

添加"Φ6mm平底刀"示例:

点击刀具表左下角的"添加刀具":

1) 在"刀具创建向导"界面中过滤刀具类型为平底刀,添加"[平底]JD-6.00"刀 具;

2) 在刀柄类型过滤器中选择"ER 系列无风阻刀柄"—"HSK-A50-ER16-070S"(根据实际使用的刀柄型号进行配置),如图2中所示;

图2配置刀柄

3) 设置刀具的输出编号/长度补偿号/半径补偿号,设置刀具的装刀长度和刀具切削加工参数,如图3中所示。

加工速度

				主轴转速/rpm	8000
				进给速度/mmpm	3500
其太信息				开槽速度/mmpm	3500
刀旦名称	[平底]10-6.00			下刀速度/mmpm	3500
输出编号	1			进刀速度/mmpm	3500
长度补偿号	1			连刀速度/mmpm	3500
半径补偿号	1			慢速下刀距离	0.5
刀具类型	平底刀			冷却方式	液体冷却
组合刀		五年至我		加丁参数	
自动命名	✓	ノ什変数		刀具材料	砌
刀具厂商	מנ	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	40	路径间距	3
物料编号	4, 4, 22, 0606000	/ 川県伸山大厦(山)	42	轴向分层	0.6

图3配置刀具相关参数

同理,按照φ6mm平底刀的创建过程,创建其他相关加工刀具。

3、创建加工坐标系

右键"加工坐标系",选择"快速定义"选项,分别添加前/后/左/右视图坐标系, 如图4中所示。

<u>⊨.</u> <u>10</u> <u>1</u> <u>4</u>	标系		
<u>Î`</u> ≩ 1	新建(N)	俯视图 底视图	确定(0)
	快速定义(Q)	石视图	Table (a)
- 100 左柱 - 100 路径	全部显示(O)	前视图 后视图	

图4快速定义加工坐标系

通过选择"提取孔中心线"选项,选取斜孔面,生成斜孔中心线。右键"加工坐标 系",选择"新建"选项,弹出如图7所示对话框,选择"定义法平面"选项,首先 拾取创建的孔中心线,然后拾取线段端点,即可创建成功。如图4中所示。

借助曲线生成		坐标系名称 MCS-1
@(两视图构造	12 空间镜像线	
<⇒ 多边构造区域		
借助曲面生成		40.2
✤沿面上线排线	⇒ 沿曲面偏移曲线	8 ✦ 拾取原点
≪ 曲面上画线	😂 曲面分模线	
🔰 面板高光切割		设置坐标轴 *
参 套用UV曲线	☞ 加工边界线	快速定义工具 *
🚈 曲面组轮廓线 🗸	截面线	⇒⊻注亚面[₩]
💭 等距交线	◇ 网格曲面等距交线	正义法十回[10]
局 曲面螺旋线	▲ 提取孔中心线	定义XY平面[P]
借助点生成	In the out of the sec	与视平面一致[⊻]
		利定♡[µ]
№ 徒手画	~ 样条通近	JUYE V (TT)

图7创建斜孔加工坐标系

4、创建几何体

起落架支架毛坯尺寸: 35mm×40mm×45mm,在 3D 造型环境下绘制毛坯轮廓线,如 图 5 中所示,并应用拉伸面命令对此轮廓线拉伸 45mm 形成毛坯 3D 造型。右键曲面几何 体列表,选择新建几何体,修改几何体名称为"起落架支架":

1) 工件设置:工件面中选择起落架支架 3D 模型;

2) 毛坯设置: 在毛坯设置界面中选择类型为轮廓线, 选择毛坯轮廓线, 拾取上边 界点为坐标原点, 下边界点位毛坯 3D 模型最低点;

3) 夹具设置: 在夹具设置界面,选择夹具面为图1中所示"夹具-起落架支架"3D造型。

- 毛坯轮廓线

图5毛坯轮廓线

图6几何体一起落架支架

5、设置几何体安装坐标系

几何体设置完成后,点击项目设置-几何体安装,根据实际情况调整几何体在机床中的位置,如图7中所示。

编辑	项目设置	自动摆放	
		坐标系	
创建几何	可体 几何体安	◆ 拾取原点	

图7几何体安装

3、数控编程

1、工件位置补偿

新建"工件位置补偿"路径组,右键单击路径组,选择路径向导---在机测量组---平面,布置起落架支架工件位置补偿测量点。

1) 俯视图测量点

选择在机测量组--平面--编辑测量域--曲面自动--拾取毛坯上表面,布置如图8 中所示在机测量点,并取消勾选测量特征中选项,命名测量程序为俯视图。

图8俯视图测量点

2) 前/后/左/右视图测量点

选择在机测量组--平面--编辑测量域--曲面自动--拾取左视图平面,布置如图 9(a)中所示左视图在机测量点,并取消勾选测量特征中选项,命名测量程序为左视 图。

复制左视图在机测量程序,编辑测量域,选择测量点界面左下角编辑命令,如图 9(b)中所示,重新选择右/前/后视图平面,编辑测量点如图 9(c)中所示。

3) 计算 X/Y 方向中心坐标值

选择在机测量组中对称元素,并将路径命名为X坐标,在对称元素路径参数中, 元素1选择左视图,元素2选择右视图,同理,计算矩形Y中心坐标,如图10中所示。

对称		对称	
对称元素类型	对称平面	对称元素类类	型 对称平面
元素1	左视图	一元素1	前视图
元素2	右视图	元素2	后视图

图 10 中心 X/Y 坐标计算

4) 建立工件位置偏差

选择在机测量组中"工件位置偏差"选项,在工件位置偏差创建方式中选择"自 定义",并按如图11中所示参数进行工件位置偏差选项的设置。

工件位置偏差	
创建方式	自定义
空间旋转Z	俯视图
平面旋转X	左视图
原点X	X坐标
原点¥	Y坐标
原点Z	俯视图
循环次数	2

图 11 工件位置偏差设置

2、数控加工工艺

起落架支架产品为多面体零件,加工中共需在左/右/后/俯共四个视图方向下进行加工,在起落架支架加工过程中,需掌握结构要素的加工如表2中所示。

工步	加工	结构要素	加工内容	加工方法
	化图			
1	左视图		半面粗	区域加工
2		小轮廓 平面	平面精	
3		封闭槽	凸台面精	单线切割
4			封闭槽粗	轮廓切割
5			封闭槽精	
6			封闭槽倒角	
7			外轮廓粗	单线切割
8			外轮廓精	
9			外轮廓倒角	
10	右视图		Φ10.2 圆柱、平面粗	区域加工
11			平面精	
12			凸台侧面精	单线切割
13			Φ10.2 圆柱侧面精	轮廓切割
14			Φ10.2 圆柱顶面粗	
15			Φ10.2 圆柱顶面精	
16			Φ10.2 圆柱倒角	
17			封闭槽粗	轮廓切割
18			封闭槽精	

表 2 起落架支架加工工艺表

19		Φ7.9孔粗	轮廓切割
20		Φ7.9孔精	

21	后视图			环形槽粗	区域加工
22			── 斜 孔	环形槽侧面、底面精	
23				环形槽倒角	轮廓切割
24	俯视图			开放槽粗	单线切割
25				开放槽精	
26				环形槽粗	轮廓切割
27				环形槽精	
28		Ф5.5 孔	外轮廓	Φ7.4孔粗	
29		斜孔		Φ7.4孔精	
30			倒角	Φ5.5孔引孔	中心钻孔 (G81)
31		林形槽 していたい		Φ5.5孔钻孔	深孔钻 (G83)
32			Ф7.¥ ƒ∟	倒角	轮廓加工
33				斜孔引面	轮廓
34				斜孔引孔	中心钻孔 (G81)
35				斜孔钻孔	深孔钻 (G83)

36		外轮廓粗	单线切割
37		外轮廓精	-

4、在机检测

1、圆探测:

选择在机测量组一圆,刀具选择 Φ4mm 直径测针,局部坐标系选择右视图坐标系, 编辑测量域,选择曲线自动,分布如图 12 所示测量点,加工深度依据实际曲线位置及 实际测量位置进行设置。

2、圆柱探测:

选择在机测量组一圆柱,局部坐标系选择右视图坐标系,编辑测量域,选择曲面自动,分布如图13所示测量点,加工深度依据实际曲面位置及实际测量位置进行设置。

图 13 圆柱元素检测

3、平面探测:

选择在机测量组一平面,局部坐标系选择右视图坐标系,编辑测量域,选择曲面 手动,分布如图13所示测量点,加工深度依据实际曲面位置及实际测量位置进行设置。

4、垂直度

选择评价测量组一垂直度,选择被测元素和基准元素。

垂直度参数		2 S
□□加工参数	垂直度	
□ 加工方案	被测元素	左平面
- 垂直度	基准元素	顶面
	公差	0.02
路径属性		

图 15

5、平行度

选择评价测量组一平行度,选择被测元素和基准元素。

平行度参数		8 23
□ 加工参数	平行度	
□ 加工方案	被测元素	左平面
	基准元素	右侧面
	公差	0.03
□		

图 16

6、距离

选择评价测量组一距离,选择被测元素和基准元素。**注意,如果测量两个孔的中心** 距需要进行两孔的圆元素探测方可评价距离,不可以是两圆柱元素。

	? <mark>×</mark>
距离评价	
被测元素	左平面
基准元素	右侧面
距离类型	 空间
□ 自定义理论值	
理论值	12.5
上公差	0.03
下公差	-0.03
	距离评价 被测元素 基准元素 距离类型 □ 自定义理论值 理论值 上公差 下公差

7、同轴度

选择评价测量组-同轴度,选择被测元素和基准元素。

同轴度参数		? 🔀
□ 加工参数	同轴度	
	被测元素	圆柱_复制
同轴度	基准元素	圆柱
	公差	0.03
路径属性		

图 17

8、检测尺寸项命名

1) 路径命名:右键单击探测路径,选择重命名,输入新命名。

2) 探测数据命名: 在测量设置或测量数据,修改检测文件目录中的文件名称。

图 18

注意:探测点每两点距离要大于 0.1mm,否则在个别评价或者工件坐标系补偿时会出现报警。起落架支架详细探测路径编程,以及检测元素编号见编程文件和工程图。