

第十二章 塑料玩具球前模的编程

加工模型 刀路模拟

12.1 学习目标与课时安排

○ (1) 掌握模具由始至终的编程流程。

○ (2) 学会进行编程前的工艺分析。

○ (3) 巩固前面所学的知识点,将所学的应用于实际生产中。

12.2 编程前的工艺分析

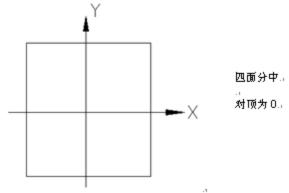
- 1、 塑料玩具球前模大小 180mmX160mmX105mm
- 2、最大加工深度: 55mm

- 3、最小的凹圆角半径: 2mm
- 4、是否需要电火花加工:不需要。因为塑料瓶模型比较简单,不存在直角或尖角,加工深度比较较小,最小凹圆角半径为2mm,可以直接加工出来。
- 5、需要使用的加工方法:型腔铣开粗、型腔铣二次开粗、深度加工轮廓半精加工、深度加工轮廓精加工、区域轮廓铣半精加工、轮廓区域精加工和清根。

12.3 编程思路及刀具的使用

(1)根据塑料玩具球前模的大小和形状,选择 D20R4的飞刀进行开粗,去除大部分余量。

- (2)第一次开粗完成后,工件上狭窄处还存在大量的余量,故可选择 R4 的合金球刀单独进行二次开粗
- (3)由于模具的尺寸精度和表面粗糙度要求均不高,则可使用 D13R0.8 的飞刀直接进行陡峭面精加工。
- (4)等高精加工完后,由于刀具直径较大,狭窄处的陡峭面无法进行加工,所以可使用 R4 的合金球刀对狭窄区域进行等高精加工。
- (5)选择 R4 的合金球刀精加工模具中的平缓区域
- (6)使用 R2.5 的球刀进行清角精加工。
- (7)使用 D6 的平底刀对两小孔进行加工。


12.4 制定加工程序单

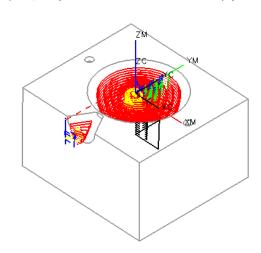
程序单

序号。	加工区域。	程序组名称。	刀具名称。	刀具长度。	加工子类型。	加工方式。
1.1	全部区域(开租)。	Q1.i	D20R4.1	65.1	型腔铣。	組加工
2.1	全部区域(二次开 組)。	Q2.1	R4.1	60.1	型腔低。	粗加工。
3.,	陡峭区域。	Q3.1	D13R0.8.1	55.1	等高轮廓铣。	稽加工。
4.1	狭窄陡峭区域。	Q4.1	R4.1	60.,	等高轮廓铣。	稽加工
5.1	平级区域面。				轮廓区域铣。	稽加工
6.1	潜角。	Q5.1	R2.5.1	55(加长).。	轮廓区域铣。	稽加工
7.,	两小孔。	Q6.1	D6.1	15.,	等高轮廓铣。	稽加工
			模具数夹示意图:	1		
			Y]		
					四面分中。	

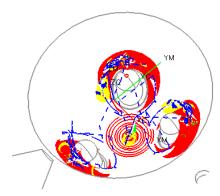
12.5 编程前需要注意的问题

○ (1)确定模具为何种材料,切削性能如何。

- (2)要通过客户了解模具的加工精度 要求,确定加工方式。
- (3)确定使用的清角刀具是否具有足够的长度和刚度。

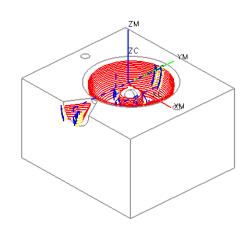


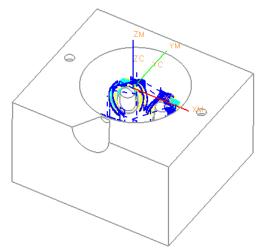
12.6 编程详细操作步骤



● 12.6.1 开粗——型腔铣

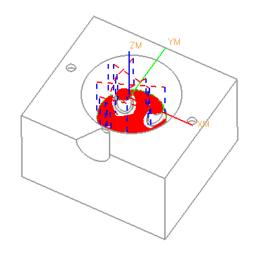
● 12.6.2 二次开粗——型腔铣

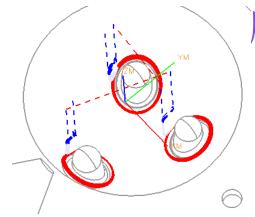



● 12.6.3 陡峭面精加工——等高轮廓铣

● 12.6.4 狭窄陡峭区域精加工——等高参考刀具加工

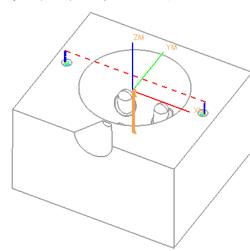
0

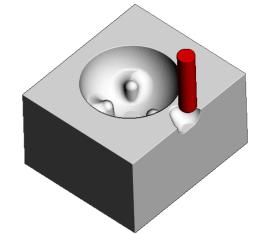


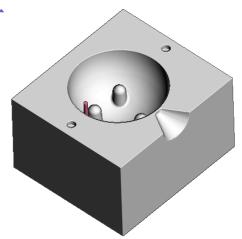


○ 12.6.5 平缓区域精加工 ----- 轮廓区域

o 12.6.6


廓区域铣




● 12.6.7 两小孔的加工——等高轮廓铣

● 12.6.8 实体模拟验证

12.7 工程师经验点评

◆ 工件加工摆放方向的原则是 X 方向为长尺寸, Y 方向为短尺寸, 所以加工前一定要注意工件的摆放, 如图 12-56 所示。↓

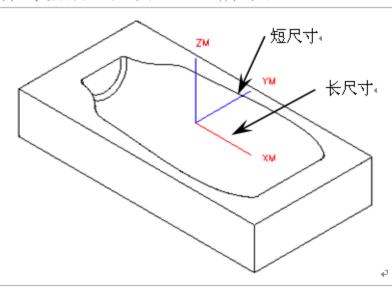


图12-56 工件的摆放₽

- ◆ 精加工前,需使工件上的余量均匀,一般情况下半精加工(中光)留余量为 0.15mm。→
- ◆ 清小角时,尽可能先使用大一号的刀具清除一部分余量,然后再使用合适的刀具清角。例如要清半径为 2mm 的圆角时,最好先使用 R3 的球刀清除部分的余量,然后使用 R1.5 的球刀清除剩下的小余量,而不是使用 R2 的球刀清角,因为和要清角的部位半径相同时,容易产生"粘刀"现象。↓

◆ 使用固定轴轮廓铣加工对称的工件时,如果都是使用同一个角度去切削工件时,有时加工的效果不是很好,如图 12-57 所示。出现这种情况,处理的方法都会使用修剪边界功能把其分开两次加工,前后两次切削的角度相反。↓

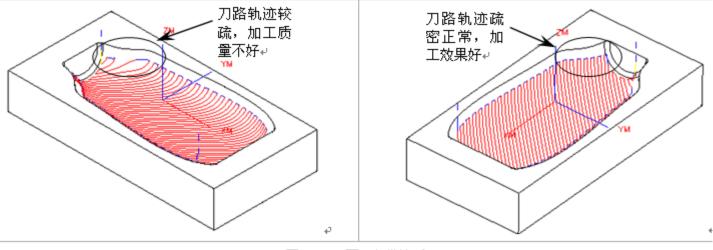


图12-57 同一切削角度₽

→ 一般情况下精加工时使用的是新的刀具,而粗加工或半精加工使用的是旧的刀具。如本章中的加工实例,虽然都是使用 R5 的球刀半精加工和精加工平缓的区域,但实际加工中不是使用完全一样的刀具。→

12.8 练习题

1。打开光盘中的〖Lianxi\Ch12\xdb.prt〗文件,如图 12-58 所示。根据本章所学习的知识内容,对模型中进行编程。

2。打开光盘中的〖Lianxi\Ch12\ttb.prt〗文件,如图 12-59 所示。根据本章所学习的知识内容,对模型进行编程。

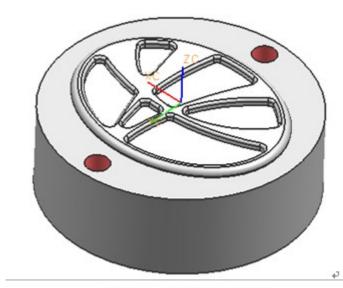


图12-58 "xdb.prt"文件

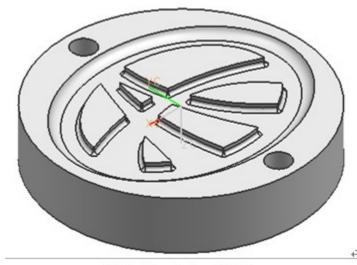


图12-59 "ttb.prt" 文件~